

Sup-norm bounds for Siegel cusp forms

Motivation

Results

Strategy o<sup>:</sup> proof

Heat kerne

Concluding the proof

# Uniform sup-norm bounds for Siegel cusp forms

Antareep Mandal

Department of Mathematics Humboldt-University Berlin

March 29, 2022



### Structure of the talk

Sup-norm bounds for Siegel cusp forms

Motivation

Results

Strategy of proof

Heat kerne

Concluding the proof

#### 1. Motivation

2. Results

3. Strategy of proof

4. Heat kernel

5. Concluding the proof



Sup-norm bounds for Siegel cusp forms

#### Motivation

Results

Strategy of proof

Heat kerne

Concluding the proof

# **Motivation**

#### Sup-norm bounds on the upper half-plane



### Sup-norm bounds on $\mathbb H$

Sup-norm bounds for Siegel cusp forms

#### Motivation

Results

Strategy of proof

Heat kernel

Concluding the proof

- $\mathbb{H} := \{z = x + iy \mid y > 0\}$ , upper half-plane
- $\Gamma \subsetneq \operatorname{SL}(2,\mathbb{R}),$  Fuchsian subgroup of the first kind
- $S_k(\Gamma)$ : space of cusp forms on  $\mathbb{H}$  of weight k w.r.t  $\Gamma$
- $\{f_j\}_{1 \le j \le d}$  O.N.B. on  $\mathcal{S}_k(\Gamma)$  w.r.t. Petersson inner product.



### Sup-norm bounds on $\mathbb H$

Sup-norm bounds for Siegel cusp forms

#### Motivation

Results

Strategy of proof

Heat kernel

Concluding the proof

- $\mathbb{H} := \{z = x + iy \mid y > 0\}$ , upper half-plane
- $\Gamma \subsetneq \operatorname{SL}(2,\mathbb{R}),$  Fuchsian subgroup of the first kind
- $S_k(\Gamma)$ : space of cusp forms on  $\mathbb{H}$  of weight k w.r.t  $\Gamma$
- $\{f_j\}_{1 \le j \le d}$  O.N.B. on  $\mathcal{S}_k(\Gamma)$  w.r.t. Petersson inner product.

#### Theorem (Friedman, Jorgenson & Kramer, 2016)

$$egin{aligned} S_k^{\Gamma}(z) &\coloneqq \sum_{j=1}^d y^k |f_j(z)|^2 \quad (z \in \mathbb{H}, k \geq 2) \ &\sup_{z \in \mathbb{H}} S_k^{\Gamma}(z) \leq egin{cases} c_{\Gamma} k & (\Gamma \ cocompact), \ c_{\Gamma} \ k^{3/2} & (\Gamma \ cofinite), \end{aligned}$$

where  $c_{\Gamma} > 0$  is a positive real number depending only on  $\Gamma$ . Furthermore, this bound is uniform in the sense that if we fix a group  $\Gamma_0 \subset SL(2,\mathbb{R})$  and take  $\Gamma$  to be a subgroup of  $\Gamma_0$  of

finite index, then  $c_{\Gamma}$  depends only on the fixed group  $\Gamma_0$ .



Sup-norm bounds for Siegel cusp forms

Motivation

#### Results

Strategy of proof

Heat kerne

Concluding the proof

# Results

#### Sup-norm bounds on the Siegel upper half-space



### Generalization

Sup-norm bounds for Siegel cusp forms

Motivation

Results

Strategy of proof

Heat kerne

Concluding the proof ■ II<sub>n</sub> = {Z = X+iY | X, Y ∈ ℝ<sup>n×n</sup>, X = X<sup>t</sup>, Y = Y<sup>t</sup>, Y > 0} Siegel upper half-space of degree n
Sp(n, ℝ) := {g ∈ ℝ<sup>2n×2n</sup> | g<sup>t</sup>J<sub>n</sub>g = J<sub>n</sub>} with J<sub>n</sub> := ( <sup>0</sup><sub>-1n</sub> <sup>1</sup><sub>n</sub>), real symplectic group of degree n

• 
$$Z \mapsto gZ = (AZ+B)(CZ+D)^{-1} \left(g = \left(\begin{smallmatrix} A & B \\ C & D \end{smallmatrix}\right) \in \operatorname{Sp}(n,\mathbb{R})\right)$$

•  $\Gamma \subsetneq \operatorname{Sp}(n,\mathbb{R})$  arithmetic subgroup, e.g.,  $\Gamma_n := \operatorname{Sp}(n,\mathbb{Z})$ 



### Generalization

Sup-norm bounds for Siegel cusp forms

Motivation

Results

Strategy of proof

Heat kerne

Concluding the proof •  $\mathbb{H}_n = \{Z = X + iY \mid X, Y \in \mathbb{R}^{n \times n}, X = X^t, Y = Y^t, Y > 0\}$ Siegel upper half-space of degree n•  $\operatorname{Sp}(n, \mathbb{R}) := \{g \in \mathbb{R}^{2n \times 2n} \mid g^t J_n g = J_n\}$  with  $J_n := \begin{pmatrix} 0 & \mathbb{I}_n \\ -\mathbb{I}_n & 0 \end{pmatrix}$ , real symplectic group of degree n

• 
$$Z \mapsto gZ = (AZ+B)(CZ+D)^{-1} \left(g = \left(\begin{smallmatrix} A & B \\ C & D \end{smallmatrix}\right) \in \operatorname{Sp}(n,\mathbb{R})\right)$$

- $\Gamma \subsetneq \operatorname{Sp}(n,\mathbb{R})$  arithmetic subgroup, e.g.,  $\Gamma_n := \operatorname{Sp}(n,\mathbb{Z})$
- $S_k^n(\Gamma)$ : space of cusp forms on  $\mathbb{H}_n$  of weight k w.r.t  $\Gamma$
- {f<sub>j</sub>}<sub>1≤j≤d</sub>, a basis of S<sup>n</sup><sub>k</sub>(Γ) orthonormal with respect to the Petersson inner product on S<sup>n</sup><sub>k</sub>(Γ).

• 
$$S_k^{\Gamma}(Z) := \sum_{j=1}^d \det(Y)^k |f_j(Z)|^2$$
  $(Z \in \mathbb{H}_n)$ 



### Sup-norm bounds on $\mathbb{H}_n$

Sup-norm bounds for Siegel cusp forms

#### Motivation

#### Results

Strategy of proof

Heat kerne

Concluding the proof

#### Theorem

- $\Gamma \subsetneq \operatorname{Sp}(n, \mathbb{R})$  arithmetic subgroup
- $k \ge n+1$

Then, for all  $n \ge 2$ , we have

$$\sup_{Z \in \mathbb{H}_n} S_k^{\Gamma}(Z) \leq \begin{cases} c_{n,\Gamma} \ k^{n(n+1)/2} & (\Gamma \ cocompact), \\ c_{n,\Gamma} \ k^{3n(n+1)/4} & (\Gamma \ cofinite), \end{cases}$$

where  $c_{n,\Gamma} > 0$  is a positive real number depending only on the degree n of  $\mathbb{H}_n$  and the group  $\Gamma$ .

Furthermore, this bound is uniform in the sense that if we fix a group  $\Gamma_0 \subsetneq \operatorname{Sp}(n, \mathbb{R})$  and take  $\Gamma$  to be a subgroup of  $\Gamma_0$  of finite index, then the constant  $c_{n,\Gamma}$  in these bounds depends only on the degree n and the fixed group  $\Gamma_0$ .



Sup-norm bounds for Siegel cusp forms

Motivation

Results

Strategy of proof

Heat kerne

Concluding the proof

# Strategy of proof



4

Sup-norm bounds for Siegel cusp forms

Motivation

Results

Strategy of proof

Heat kerne

Concluding the proof •  $\mathcal{V}_k^n(\Gamma)$ : the space of real analytic functions  $\varphi \colon \mathbb{H}_n \to \mathbb{C}$  with the transformation behaviour

$$\varphi(\gamma Z) = \left( \frac{\det(CZ + D)}{\det(C\overline{Z} + D)} \right)^{k/2} \varphi(Z) \quad \left( \gamma = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \Gamma \right)$$

- Petersson inner product and norm defined on  $\mathcal{V}_k^n(\Gamma)$ .
- *H<sup>n</sup><sub>k</sub>*(Γ) := {φ ∈ *V<sup>n</sup><sub>k</sub>*(Γ) | ||φ|| < ∞}, the Hilbert space of square integrable functions in *V<sup>n</sup><sub>k</sub>*(Γ).



4

Sup-norm bounds for Siegel cusp forms

Motivation

Results

Strategy of proof

Heat kerne

Concluding the proof •  $\mathcal{V}_k^n(\Gamma)$ : the space of real analytic functions  $\varphi \colon \mathbb{H}_n \to \mathbb{C}$  with the transformation behaviour

$$\varphi(\gamma Z) = \left( \frac{\det(CZ + D)}{\det(C\overline{Z} + D)} \right)^{k/2} \varphi(Z) \quad \left( \gamma = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \Gamma \right)$$

- Petersson inner product and norm defined on  $\mathcal{V}_k^n(\Gamma)$ .
- *H<sup>n</sup><sub>k</sub>*(Γ) := {φ ∈ *V<sup>n</sup><sub>k</sub>*(Γ) | ||φ|| < ∞}, the Hilbert space of square integrable functions in *V<sup>n</sup><sub>k</sub>*(Γ).
- $\Delta$ : Laplace–Beltrami operator on  $\mathbb{H}_n$
- Siegel–Maaß Laplacian of weight k:  $\Delta_k = \Delta \operatorname{tr}\left(ikY\frac{\partial}{\partial X}\right)$



4

Sup-norm bounds for Siegel cusp forms

Motivation

Results

Strategy of proof

Heat kerne

Concluding the proof •  $\mathcal{V}_k^n(\Gamma)$ : the space of real analytic functions  $\varphi \colon \mathbb{H}_n \to \mathbb{C}$  with the transformation behaviour

$$\varphi(\gamma Z) = \left(\frac{\det(CZ+D)}{\det(C\overline{Z}+D)}\right)^{k/2} \varphi(Z) \quad \left(\gamma = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \Gamma\right)$$

- Petersson inner product and norm defined on  $\mathcal{V}_k^n(\Gamma)$ .
- *H<sup>n</sup><sub>k</sub>*(Γ) := {φ ∈ *V<sup>n</sup><sub>k</sub>*(Γ) | ||φ|| < ∞}, the Hilbert space of square integrable functions in *V<sup>n</sup><sub>k</sub>*(Γ).
- $\Delta$ : Laplace–Beltrami operator on  $\mathbb{H}_n$
- Siegel–Maaß Laplacian of weight  $k: \Delta_k = \Delta \operatorname{tr}\left(ikY \frac{\partial}{\partial X}\right)$
- Δ<sub>k</sub> extends to an essentially self-adjoint linear operator acting on a dense subspace of H<sup>n</sup><sub>k</sub>(Γ).



Sup-norm bounds for Siegel cusp forms

Motivation

Results

Strategy of proof

Heat kernel

Concluding the proof

• Laplace eq.  $(\Delta_k + \lambda) \varphi = 0$  satisfy  $\lambda \geq \frac{nk}{4}((n+1) - k)$ 



Sup-norm bounds for Siegel cusp forms

Motivation

Results

Strategy of proof

Heat kernel

Concluding the proof

• Laplace eq. 
$$(\Delta_k + \lambda)\varphi = 0$$
 satisfy  $\lambda \geq \frac{nk}{4}((n+1) - k)$ 

• 
$$\lambda = \frac{nk}{4}((n+1) - k) \implies \varphi \in \mathcal{H}_k^n(\Gamma)$$
 is of the form  $\varphi(Z) = \det(Y)^{k/2} f(Z)$  with  $f \in \mathcal{S}_k^n(\Gamma)$ 

•



Sup-norm bounds for Siegel cusp forms

Motivation

Results

Strategy of proof

Heat kernel

Concluding the proof

- Laplace eq.  $(\Delta_k + \lambda) \varphi = 0$  satisfy  $\lambda \geq \frac{nk}{4}((n+1) k)$
- $\lambda = \frac{nk}{4}((n+1) k) \implies \varphi \in \mathcal{H}_k^n(\Gamma)$  is of the form  $\varphi(Z) = \det(Y)^{k/2} f(Z)$  with  $f \in \mathcal{S}_k^n(\Gamma)$

#### Connecting Siegel cusp forms to $\Delta_k$

 $\mathcal{S}_k(\Gamma) \cong \ker(\Delta_k + rac{nk}{4}((n+1)-k)) ext{ induced by } f \mapsto \det(Y)^{k/2} f$ 



Sup-norm bounds for Siegel cusp forms

Motivation

Results

Strategy of proof

Heat kerne

Concluding the proof

- Laplace eq.  $(\Delta_k + \lambda) \varphi = 0$  satisfy  $\lambda \geq \frac{nk}{4}((n+1)-k)$
- $\lambda = \frac{nk}{4}((n+1) k) \implies \varphi \in \mathcal{H}_k^n(\Gamma)$  is of the form  $\varphi(Z) = \det(Y)^{k/2} f(Z)$  with  $f \in \mathcal{S}_k^n(\Gamma)$

#### Connecting Siegel cusp forms to $\Delta_k$

 $\mathcal{S}_k(\Gamma) \cong \ker(\Delta_k + rac{nk}{4}((n+1)-k)) ext{ induced by } f \mapsto \det(Y)^{k/2} f$ 

•  $\mathcal{K}_t^{(k,\Gamma)}$ : Heat kernel corresponding to  $\Delta_k$  on  $M = \Gamma \setminus \mathbb{H}_n$ .



Sup-norm bounds for Siegel cusp forms

Motivation

Results

Strategy of proof

Heat kerne

Concluding the proof

- Laplace eq.  $(\Delta_k + \lambda) \varphi = 0$  satisfy  $\lambda \geq \frac{nk}{4}((n+1)-k)$
- $\lambda = \frac{nk}{4}((n+1) k) \implies \varphi \in \mathcal{H}_k^n(\Gamma)$  is of the form  $\varphi(Z) = \det(Y)^{k/2} f(Z)$  with  $f \in \mathcal{S}_k^n(\Gamma)$

#### Connecting Siegel cusp forms to $\Delta_k$

 $\mathcal{S}_k(\Gamma) \cong \ker(\Delta_k + rac{nk}{4}((n+1)-k)) ext{ induced by } f \mapsto \det(Y)^{k/2}f$ 

*K*<sup>(k,Γ)</sup><sub>t</sub>: Heat kernel corresponding to Δ<sub>k</sub> on *M* = Γ\ℍ<sub>n</sub>.
 *K*<sup>(k,Γ)</sup><sub>t</sub> has the spectral decomposition

$$\mathcal{K}_t^{(k,\Gamma)}(Z) = \sum_{j=1}^\infty e^{-\lambda_j t} |arphi_{\lambda_j}(Z)|^2 + ext{continuous terms}$$



Sup-norm bounds for Siegel cusp forms

Motivation

Results

#### Strategy of proof

Heat kerne

Concluding the proof • Laplace eq.  $(\Delta_k + \lambda)\varphi = 0$  satisfy  $\lambda \ge \frac{nk}{4}((n+1) - k)$ •  $\lambda = \frac{nk}{4}((n+1) - k) \implies \varphi \in \mathcal{H}_k^n(\Gamma)$  is of the form  $\varphi(Z) = \det(Y)^{k/2}f(Z)$  with  $f \in \mathcal{S}_k^n(\Gamma)$ 

#### Connecting Siegel cusp forms to $\Delta_k$

 $\mathcal{S}_k(\Gamma) \cong \ker(\Delta_k + rac{nk}{4}((n+1)-k)) ext{ induced by } f \mapsto \det(Y)^{k/2} f$ 

K<sup>(k,Γ)</sup><sub>t</sub>: Heat kernel corresponding to Δ<sub>k</sub> on M = Γ\ℍ<sub>n</sub>.
 K<sup>(k,Γ)</sup><sub>t</sub> has the spectral decomposition
 K<sup>(k,Γ)</sup><sub>t</sub>(Z) = ∑<sup>∞</sup><sub>j=1</sub> e<sup>-λ<sub>j</sub>t</sup> |φ<sub>λ<sub>j</sub></sub>(Z)|<sup>2</sup> + continuous terms

#### Connecting heat kernel to $S_k^{\Gamma}(Z)$

$$\lim_{t\to\infty}\exp\left(\frac{nk}{4}((n+1)-k)t\right)\mathcal{K}_t^{(k,\Gamma)}(Z)=\sum_{j=1}^d\det(Y)^k|f_j(Z)|^2$$



Sup-norm bounds for Siegel cusp forms

Motivation

Results

#### Strategy of proof

Heat kerne

Concluding the proof Laplace eq. (Δ<sub>k</sub> + λ)φ = 0 satisfy λ ≥ nk/4 ((n + 1) - k)
λ = nk/4 ((n + 1) - k) ⇒ φ ∈ H<sup>n</sup><sub>k</sub>(Γ) is of the form φ(Z) = det(Y)<sup>k/2</sup>f(Z) with f ∈ S<sup>n</sup><sub>k</sub>(Γ)

#### Connecting Siegel cusp forms to $\Delta_k$

 $\mathcal{S}_k(\Gamma) \cong \ker(\Delta_k + \frac{nk}{4}((n+1)-k)) \text{ induced by } f \mapsto \det(Y)^{k/2}f$ 

K<sup>(k,Γ)</sup><sub>t</sub>: Heat kernel corresponding to Δ<sub>k</sub> on M = Γ\ℍ<sub>n</sub>.
 K<sup>(k,Γ)</sup><sub>t</sub> has the spectral decomposition
 K<sup>(k,Γ)</sup><sub>t</sub>(Z) = ∑<sup>∞</sup><sub>j=1</sub> e<sup>-λ<sub>j</sub>t</sup> |φ<sub>λ<sub>j</sub></sub>(Z)|<sup>2</sup> + continuous terms

#### Connecting heat kernel to $S_k^{\Gamma}(Z)$

 $\lim_{t\to\infty}\exp\left(-\frac{nk}{4}(k-(n+1))t\right)K_t^{(k,\Gamma)}(Z)=S_k^{\Gamma}(Z)\quad (k\ge n+1)$ 



Sup-norm bounds for Siegel cusp forms

Motivation

Results

#### Strategy of proof

Heat kerne

Concluding the proof

- Laplace eq.  $(\Delta_k + \lambda) \varphi = 0$  satisfy  $\lambda \geq \frac{nk}{4}((n+1)-k)$
- $\lambda = \frac{nk}{4}((n+1)-k) \implies \varphi \in \mathcal{H}_k^n(\Gamma)$  is of the form  $\varphi(Z) = \det(Y)^{k/2} f(Z)$  with  $f \in \mathcal{S}_k^n(\Gamma)$

#### Connecting Siegel cusp forms to $\Delta_k$

 $\mathcal{S}_k(\Gamma) \cong \ker(\Delta_k + \frac{nk}{4}((n+1)-k)) \text{ induced by } f \mapsto \det(Y)^{k/2}f$ 

K<sup>(k,Γ)</sup><sub>t</sub>: Heat kernel corresponding to Δ<sub>k</sub> on M = Γ\ℍ<sub>n</sub>.
 K<sup>(k,Γ)</sup><sub>t</sub> has the spectral decomposition
 K<sup>(k,Γ)</sup><sub>t</sub>(Z) = ∑<sup>∞</sup><sub>i=1</sub> e<sup>-λ<sub>j</sub>t</sup> |φ<sub>λ<sub>j</sub></sub>(Z)|<sup>2</sup> + continuous terms

Connecting heat kernel to  $S_k^{\Gamma}(Z)$ 

$$\exp\left(-rac{nk}{4}(k-(n+1))t
ight)K_t^{(k,\Gamma)}(Z)\geq S_k^{\Gamma}(Z)\quad (t>0)$$



Sup-norm bounds for Siegel cusp forms

Motivation

Results

Strategy o<sup>:</sup> proof

Heat kernel

Concluding the proof

# Heat kernel



Sup-norm bounds for Siegel cusp forms

Motivation

Results

Strategy of proof

Heat kernel

Concluding the proof The heat kernel on  $\mathbb{H}_n$  corresponding to the Laplace–Beltrami operator  $\Delta = \Delta_0$  is obtained as:

#### Heat kernel on $\mathbb{H}_n$

$$K_t(2R) = c_n \frac{\exp\left(-\sum_{j=1}^n j^2 t/4\right)}{t^{n^2+n/2}} \int_{q \in \mathcal{K}} \frac{\varepsilon(\varrho(r,q))\exp\left(-\sum_{j=1}^n \varrho_j(r,q)^2/t\right)}{\delta(\varrho(r,q))} \,\mathrm{d}\mu(q)$$

#### where,

 $R = R(Z, W) (Z, W \in \mathbb{H}_n)$  is a  $(n \times n)$  diagonal matrix coming from the eigenvalues of the cross-ratio matrix of Z and W.



Sup-norm bounds for Siegel cusp forms

Motivation

Results

Strategy of proof

Heat kernel

Concluding the proof The heat kernel on  $\mathbb{H}_n$  corresponding to the Laplace–Beltrami operator  $\Delta = \Delta_0$  is obtained as:

#### Heat kernel on $\mathbb{H}_n$

$$\mathcal{K}_{t}(2R) = c_{n} \frac{\exp\left(-\sum_{j=1}^{n} j^{2} t/4\right)}{t^{n^{2}+n/2}} \int_{q \in \mathcal{K}} \frac{\varepsilon(\varrho(r,q)) \exp\left(-\sum_{j=1}^{n} \varrho_{j}(r,q)^{2}/t\right)}{\delta(\varrho(r,q))} \, \mathrm{d}\mu(q)$$

$$R = \begin{pmatrix} r_1 & 0 \\ & \ddots & \\ 0 & & r_n \end{pmatrix} \quad r = \begin{pmatrix} R & 0 \\ 0 & -R \end{pmatrix} \quad (r_j \in \mathbb{R}_{\geq 0})$$
$$P = \begin{pmatrix} \varrho_1 & 0 \\ & \ddots & \\ 0 & & \varrho_n \end{pmatrix} \quad \varrho = \begin{pmatrix} P & 0 \\ 0 & -P \end{pmatrix} \quad (\varrho_j \in \mathbb{R})$$



Sup-norm bounds for Siegel cusp forms

Motivation

Results

Strategy of proof

Heat kernel

Concluding the proof The heat kernel on  $\mathbb{H}_n$  corresponding to the Laplace–Beltrami operator  $\Delta = \Delta_0$  is obtained as:

#### Heat kernel on $\mathbb{H}_n$

$$\mathcal{K}_t(2R) = c_n \frac{\exp\left(-\sum_{j=1}^n j^2 t/4\right)}{t^{n^2+n/2}} \int_{q \in \mathcal{K}} \frac{\varepsilon(\varrho(r,q))\exp\left(-\sum_{j=1}^n \varrho_j(r,q)^2/t\right)}{\delta(\varrho(r,q))} \,\mathrm{d}\mu(q)$$

where,

• 
$$qe^{r}\overline{q}^{t} = ue^{\varrho}\overline{u}^{t} \in \operatorname{Sp}(n,\mathbb{C})$$
, Hermitian.

- r and  $\rho$  symplectic diagonal.
- $q \in K = \operatorname{Sp}(n, \mathbb{C}) \cap O(2n, \mathbb{C})$
- $u \in U = \operatorname{Sp}(n, \mathbb{C}) \cap U(2n)$
- Hard to explicitly calculate  $\rho$  in terms of r and q.



Sup-norm bounds for Siegel cusp forms

Motivation

Results

Strategy of proof

Heat kernel

Concluding the proof The heat kernel on  $\mathbb{H}_n$  corresponding to the Laplace–Beltrami operator  $\Delta = \Delta_0$  is obtained as:

#### Heat kernel on $\mathbb{H}_n$

$$K_t(2R) = c_n \frac{\exp(-\sum_{j=1}^n j^2 t/4)}{t^{n^2 + n/2}} \int_{q \in K} \frac{\varepsilon(\varrho(r,q)) \exp(-\sum_{j=1}^n \varrho_j(r,q)^2/t)}{\delta(\varrho(r,q))} \, \mathrm{d}\mu(q)$$

#### where,

$$\varepsilon(\varrho) = \prod_{1 \le j \le n} \varrho_j \prod_{1 \le j < k \le n} (\varrho_j + \varrho_k) \prod_{1 \le j < k \le n} (\varrho_j - \varrho_k)$$
$$\delta(\varrho) = \prod_{1 \le j \le n} \operatorname{sh}(\varrho_j) \prod_{1 \le j < k \le n} \operatorname{sh}(\frac{\varrho_j + \varrho_k}{2}) \prod_{1 \le j < k \le n} \operatorname{sh}(\frac{\varrho_j - \varrho_k}{2})$$



Sup-norm bounds for Siegel cusp forms

Motivation

Results

Strategy of proof

Heat kernel

Concluding the proof The heat kernel  $K_t^{(k)}(2R)$  of weight k on  $\mathbb{H}_n$  is immediately obtained from the previous formula by inserting the factor  $\det(h(q))^{2k}$ , i.e.,

$$\mathcal{K}_{t}^{(k)}(2R) = c_{n} \frac{e^{-\sum_{j=1}^{n} j^{2}t/4}}{t^{n^{2}+n/2}} \int_{\mathcal{K}} \cdots \det(h(q))^{2k} d\mu(q),$$

where the matrix  $h(q) \in \mathbb{C}^{n \times n}$  is obtained as follows:

• Write  $q \in K$  as  $q = q_0 q_h$  with  $q_0$  real orthogonal and

$$q_h = \left(\begin{array}{cc} A & B \\ -B & A \end{array}\right)$$

is hermitian orthogonal.

• Then, we obttin h(q) = A + iB, which is hermitian.



Sup-norm bounds for Siegel cusp forms

From the parametrization

$$u = \begin{pmatrix} V & 0 \\ 0 & \overline{V} \end{pmatrix} \begin{pmatrix} \cos(\Theta) & \sin(\Theta) \\ -\sin(\Theta) & \cos(\Theta) \end{pmatrix} \begin{pmatrix} W & 0 \\ 0 & \overline{W} \end{pmatrix} \text{ of } U \text{ and the}$$
  
relation  $qe^r \overline{q}^t = ue^{\varrho} \overline{u}^t$ , one obtains

Motivation

Results

Strategy of proof

#### Heat kernel

Concluding the proof



Sup-norm bounds for Siegel cusp forms From the parametrization  $u = \begin{pmatrix} V & 0 \\ 0 & \overline{V} \end{pmatrix} \begin{pmatrix} \cos(\Theta) & \sin(\Theta) \\ -\sin(\Theta) & \cos(\Theta) \end{pmatrix} \begin{pmatrix} W & 0 \\ 0 & \overline{W} \end{pmatrix} \text{ of } U \text{ and the}$ relation  $qe^r \overline{q}^t = ue^{\varrho} \overline{u}^t$ , one obtains

$$\det(h(q)) = \frac{\det(\cos(\Theta)We^{P}\overline{W}^{t}\cos(\Theta) + \sin(\Theta)\overline{W}e^{-P}W^{t}\sin(\Theta))}{\prod_{j=1}^{n}\operatorname{ch}^{k}(r_{j})}$$

Heat kernel

Concluding the proof



Sup-norm bounds for Siegel cusp forms

From the parametrization

 $\det(h(q)) \leq \exp{\Big(\sum_{j=1}^n |\varrho_j|\Big)}/\prod_{j=1}^n \operatorname{ch}^k(r_j)$ 

$$u = \begin{pmatrix} V & 0 \\ 0 & \overline{V} \end{pmatrix} \begin{pmatrix} \cos(\Theta) & \sin(\Theta) \\ -\sin(\Theta) & \cos(\Theta) \end{pmatrix} \begin{pmatrix} W & 0 \\ 0 & \overline{W} \end{pmatrix} \text{ of } U \text{ and the}$$
  
relation  $qe^r \overline{q}^t = u e^{\varrho} \overline{u}^t$ , one obtains

Motivation

Results

Strategy of proof

Heat kernel

Concluding the proof

10 / 15



Sup-norm bounds for Siegel cusp forms

Motivation

Results

Strategy of proof

Heat kernel

(

Concluding the proof From the parametrization

$$u = \begin{pmatrix} V & 0 \\ 0 & \overline{V} \end{pmatrix} \begin{pmatrix} \cos(\Theta) & \sin(\Theta) \\ -\sin(\Theta) & \cos(\Theta) \end{pmatrix} \begin{pmatrix} W & 0 \\ 0 & \overline{W} \end{pmatrix} \text{ of } U \text{ and the}$$
  
relation  $qe^r \overline{q}^t = u e^{\varrho} \overline{u}^t$ , one obtains

$$\det(h(q)) \leq \exp\left(\sum_{j=1}^{n} |\varrho_j|\right) / \prod_{j=1}^{n} \operatorname{ch}^k(r_j)$$

Periodized weight-k heat kernel on  $\Gamma \setminus \mathbb{H}_n$ 

$$\mathcal{K}_{t}^{(k,\Gamma)}(Z) := \sum_{\gamma \in \Gamma} \det \left( \frac{Z - \gamma \overline{Z}}{\gamma Z - \overline{Z}} \right)^{k/2} \det \left( \frac{C \overline{Z} + D}{C Z + D} \right)^{k/2} \mathcal{K}_{t}^{(k)}(2R(Z, \gamma Z))$$



Sup-norm bounds for Siegel cusp forms

Motivation

Results

Strategy o proof

Heat kernel

Concluding the proof

# **Concluding the proof**



 $\sum_{\gamma \in \Gamma}$ 

Sup-norm bounds for Siegel cusp forms

Motivation

Results

Strategy of proof

Heat kernel

Concluding the proof

• Let M be compact. By a counting function argument

$$egin{aligned} &\mathcal{K}^{(k)}_t(R(Z,\gamma Z)) \leq c_{n,\mathsf{\Gamma}} \int\limits_{(r_j)=0}^{n} \mathcal{K}^{(k)}_t(2R) \left| \delta(2r) 
ight| \bigwedge_{j=1}^n \mathsf{d} r_j \ &= c_{n,\mathsf{\Gamma}} \int\limits_{(r_j)=0}^{\infty} \int\limits_{q\in\mathcal{K}} \cdots \quad \mathsf{d} \mu(q) \wedge \bigwedge_{j=1}^n \mathsf{d} r_j \end{aligned}$$



 $\gamma \in$ 

Sup-norm bounds for Siegel cusp forms

Concluding the proof

• Let *M* be compact. By a counting function argument

$$\sum_{\gamma \in \Gamma} \mathcal{K}_t^{(k)}(R(Z, \gamma Z)) \leq c_{n,\Gamma} \int_{(r_j)=0}^{\infty} \mathcal{K}_t^{(k)}(2R) |\delta(2r)| \bigwedge_{j=1}^n \mathrm{d}r_j$$
$$= c_{n,\Gamma} \int_{(r_j)=0}^{\infty} \int_{q \in K} \cdots \mathrm{d}\mu(q) \wedge \bigwedge_{j=1}^n \mathrm{d}r_j$$

• From  $qe^r \overline{q}^t = ue^{\varrho} \overline{u}^t$ , using change of variables  $|\delta(2r)| \bigwedge_{i=1}^n dr_j \wedge d\mu(q) = c_n \, \delta(\varrho)^2 \, \bigwedge_{i=1}^n d\varrho_j \wedge d\mu(u)$ , the right hand integral becomes

$$\sum_{\gamma \in \Gamma} \mathcal{K}_t^{(k)}(\mathcal{R}(Z, \gamma Z)) \leq c_{n, \Gamma} \int_{(\varrho_j) = -\infty}^{\infty} \int_{u \in U} \cdots d\mu(u) \wedge \bigwedge_{j=1}^n d\varrho_j$$



Sup-norm bounds for Siegel cusp forms

Motivation

Results

Strategy o proof

Heat kernel

Concluding the proof

• This gets rid of the semi-explicit nature of the integral and can be explicitly bounded by a series of Gamma integrals which can be easily evaluated to a polynomial in *k* and *t*.



Sup-norm bounds for Siegel cusp forms

Motivation

Results

Strategy of proof

Heat kernel

Concluding the proof

- This gets rid of the semi-explicit nature of the integral and can be explicitly bounded by a series of Gamma integrals which can be easily evaluated to a polynomial in *k* and *t*.
- Taking the highest values of k and t we have  $S_k^{\Gamma}(Z) \leq c_{n,\Gamma} k^{n(n+1)} t^{\frac{n(n+1)}{2}} \mu(\sqrt{t}).$



Sup-norm bounds for Siegel cusp forms

Motivation

Results

Strategy of proof

Heat kernel

Concluding the proof

- This gets rid of the semi-explicit nature of the integral and can be explicitly bounded by a series of Gamma integrals which can be easily evaluated to a polynomial in *k* and *t*.
- Taking the highest values of k and t we have  $S_k^{\Gamma}(Z) \leq c_{n,\Gamma} k^{n(n+1)} t^{\frac{n(n+1)}{2}} \mu(\sqrt{t}).$
- Now multiplying both sides of the above inequality by  $e^{-kt}$  and integrating over  $t \in [0, \infty]$ , we have

$$S_k^{\Gamma}(Z) \leq c_{n,\Gamma} \, k^{n(n+1)/2} \qquad (Z \in \mathbb{H}_n),$$

which is the requisite compact bound.



Sup-norm bounds for Siegel cusp forms

Motivation

Results

Strategy of proof

Heat kernel

Concluding the proof

$$\sup_{Z\in\mathbb{H}_n} S_k^{\Gamma}(Z) \leq c_n \, k^{n(n+1)/2} \sum_{\gamma\in\Gamma} \frac{1}{\prod_{j=1}^n \, \mathrm{ch}^k(r_j(Z,\gamma Z))}$$



Sup-norm bounds for Siegel cusp forms

Motivation

Results

Strategy o proof

Heat kernel

Concluding the proof

• With some limiting argument on the heat kernel:

$$\sup_{Z\in\mathbb{H}_n}S_k^{\Gamma}(Z)\leq c_n\,k^{n(n+1)/2}\sum_{\gamma\in\Gamma}\,\frac{1}{\prod_{j=1}^n\,\mathrm{ch}^k(r_j(Z,\gamma Z))}$$

• Using the commensurability of  $\Gamma$  with  $\Gamma_n$ , we shift to the standard picture for 'cusps at infinity' for  $\Gamma_n$ .



Sup-norm bounds for Siegel cusp forms

Motivation

Results

Strategy of proof

Heat kernel

Concluding the proof

$$\sup_{Z\in\mathbb{H}_n}S_k^{\Gamma}(Z)\leq c_n\,k^{n(n+1)/2}\sum_{\gamma\in\Gamma}\,\frac{1}{\prod_{j=1}^n\,\mathrm{ch}^k(r_j(Z,\gamma Z))}$$

- Using the commensurability of  $\Gamma$  with  $\Gamma_n$ , we shift to the standard picture for 'cusps at infinity' for  $\Gamma_n$ .
- Then with a maximum-modulus argument, we show that in suitably chosen cusp-neighbourhoods, the compact bound holds.



Sup-norm bounds for Siegel cusp forms

Motivation

Results

Strategy of proof

Heat kernel

Concluding the proof

$$\sup_{Z\in\mathbb{H}_n}S_k^{\Gamma}(Z)\leq c_n\,k^{n(n+1)/2}\sum_{\gamma\in\Gamma}\,\frac{1}{\prod_{j=1}^n\,\mathrm{ch}^k(r_j(Z,\gamma Z))}$$

- Using the commensurability of  $\Gamma$  with  $\Gamma_n$ , we shift to the standard picture for 'cusps at infinity' for  $\Gamma_n$ .
- Then with a maximum-modulus argument, we show that in suitably chosen cusp-neighbourhoods, the compact bound holds.
- Too far away from the cusps, obviously the compact bound holds



Sup-norm bounds for Siegel cusp forms

Motivation

Results

Strategy of proof

Heat kernel

Concluding the proof

$$\sup_{Z\in\mathbb{H}_n}S_k^{\Gamma}(Z)\leq c_n\,k^{n(n+1)/2}\sum_{\gamma\in\Gamma}\,\frac{1}{\prod_{j=1}^n\,\mathrm{ch}^k(r_j(Z,\gamma Z))}$$

- Using the commensurability of  $\Gamma$  with  $\Gamma_n$ , we shift to the standard picture for 'cusps at infinity' for  $\Gamma_n$ .
- Then with a maximum-modulus argument, we show that in suitably chosen cusp-neighbourhoods, the compact bound holds.
- Too far away from the cusps, obviously the compact bound holds
- Thus, left to determine the bound only in the annulus:  $\{Z = X + iY \in \mathscr{F}_n \mid \varepsilon < \lambda_n(Y) \le \frac{k}{2c_2(n)}\}$   $\subsetneq \{Z = X + iY \in \mathscr{F}_n \mid Y \le \frac{k}{2c_2(n)}\mathbb{1}_n\}$ 13/15



Sup-norm bounds for Siegel cusp forms

Motivation

Results

Strategy of proof

Heat kernel

Concluding the proof

• In this region, we split the sum into  $\sum_{\gamma \in \Gamma \setminus \Gamma_{\infty}} + \sum_{\gamma \in \Gamma_{\infty}}$ .



Sup-norm bounds for Siegel cusp forms

Motivation

Results

Strategy of proof

Heat kernel

Concluding the proof

• In this region, we split the sum into  $\sum_{\gamma \in \Gamma \setminus \Gamma_{\infty}} + \sum_{\gamma \in \Gamma_{\infty}}$ .

#### Standard parabolic matrices

$$\begin{split} & \Gamma_{\infty} = \Big\{ \Big(\begin{smallmatrix} A & AS \\ 0 & A^{-t} \end{smallmatrix} \Big) \, \Big| \, A = \Big(\begin{smallmatrix} \mathbb{1}_{j} & 0 \\ L & \mathbb{1}_{n-j} \end{smallmatrix} \Big), \, S = \Big(\begin{smallmatrix} 0 & H^{t} \\ H & S_{2} \end{smallmatrix} \Big), \, 1 \leq j \leq n-1 \Big\}, \\ & \text{where } L, H \in \mathbb{Z}^{(n-j) \times j} \text{ and } S_{2} \in \mathbb{Z}^{(n-j) \times (n-j)}, \, S_{2} = S_{2}^{t}. \end{split}$$



Sup-norm bounds for Siegel cusp forms

Motivation

Results

Strategy of proof

Heat kernel

Concluding the proof

• In this region, we split the sum into  $\sum_{\gamma \in \Gamma \setminus \Gamma_{\infty}} + \sum_{\gamma \in \Gamma_{\infty}}$ .

#### Standard parabolic matrices

$$\begin{split} &\Gamma_{\infty} = \Big\{ \Big(\begin{smallmatrix} A & AS \\ 0 & A^{-t} \end{smallmatrix} \Big) \, \Big| \, A = \Big(\begin{smallmatrix} \mathbb{1}_{j} & 0 \\ L & \mathbb{1}_{n-j} \end{smallmatrix} \Big), \, S = \Big(\begin{smallmatrix} 0 & H^{t} \\ H & S_{2} \end{smallmatrix} \Big), \, 1 \leq j \leq n-1 \Big\}, \\ &\text{where } L, H \in \mathbb{Z}^{(n-j) \times j} \text{ and } S_{2} \in \mathbb{Z}^{(n-j) \times (n-j)}, \, S_{2} = S_{2}^{t}. \end{split}$$

• The sum  $\sum_{\gamma\in\Gamma\backslash\Gamma_\infty}$  gives only compact bound.



Sup-norm bounds for Siegel cusp forms

Motivation

Results

Strategy of proof

Heat kernel

Concluding the proof

• In this region, we split the sum into  $\sum_{\gamma \in \Gamma \setminus \Gamma_{\infty}} + \sum_{\gamma \in \Gamma_{\infty}}$ .

#### Standard parabolic matrices

$$\begin{split} &\Gamma_{\infty} = \Big\{ \Big(\begin{smallmatrix} A & AS \\ 0 & A^{-t} \end{smallmatrix} \Big) \, \Big| \, A = \Big(\begin{smallmatrix} \mathbb{1}_{j} & 0 \\ L & \mathbb{1}_{n-j} \end{smallmatrix} \Big), \, S = \Big(\begin{smallmatrix} 0 & H^{t} \\ H & S_{2} \end{smallmatrix} \Big), \, 1 \leq j \leq n-1 \Big\}, \\ & \text{where } L, H \in \mathbb{Z}^{(n-j) \times j} \text{ and } S_{2} \in \mathbb{Z}^{(n-j) \times (n-j)}, \, S_{2} = S_{2}^{t}. \end{split}$$

• The sum  $\sum_{\gamma\in\Gamma\setminus\Gamma_\infty}$  gives only compact bound.

 $\bullet$  The largest contribution in the sum  $\sum_{\gamma\in\Gamma_\infty}$  comes from

$$\Gamma_{\infty}^{0} = \Big\{ \Big( \begin{smallmatrix} \mathbb{1}_{n} & S \\ 0 & \mathbb{1}_{n} \end{smallmatrix} \Big) \Big| S = S^{t} \in \mathbb{Z}^{n \times n} \Big\}.$$

•  $\begin{pmatrix} \mathbb{I}_n & S \\ 0 & \mathbb{I}_n \end{pmatrix} Z = Z + S = (X + S) + iY$   $(Z = X + iY \in \mathbb{H}_n).$ 



Sup-norm bounds for Siegel cusp forms

Motivation

Results

Strategy of proof

Heat kernel

Concluding the proof

$$\sum_{\gamma \in \Gamma_{\infty}^{0}} \frac{1}{\prod_{j=1}^{n} \operatorname{ch}^{k}(r_{j}(Z, \gamma Z))}$$



Sup-norm bounds for Siegel cusp forms

Motivation

Results

Strategy of proof

Heat kernel

Concluding the proof

$$\sum_{\gamma \in \Gamma_{\infty}^{0}} \frac{1}{\prod_{j=1}^{n} \operatorname{ch}^{k}(r_{j}(Z, Z+S))}$$



Sup-norm bounds for Siegel cusp forms

Motivation

Results

Strategy of proof

Heat kernel

Concluding the proof

$$\sum_{\gamma \in \Gamma_{\infty}^{0}} \frac{1}{\prod_{j=1}^{n} \operatorname{ch}^{k}(r_{j}(Z, Z+S))} \leq \int_{S=S^{t}} \frac{[dS]}{\det(\mathbb{1}_{n} + (\frac{1}{2}Y^{-1/2}SY^{-1/2})^{2})^{k/2}}$$



Sup-norm bounds for Siegel cusp forms

Motivation

Results

Strategy of proof

Heat kernel

Concluding the proof

$$\sum_{\gamma \in \Gamma_{\infty}^{0}} \frac{1}{\prod_{j=1}^{n} \operatorname{ch}^{k}(r_{j}(Z, Z+S))} \leq \int_{S=S^{t}} \frac{[\mathsf{d}S]}{\det(\mathbb{1}_{n} + (\frac{1}{2}Y^{-1/2}SY^{-1/2})^{2})^{k/2}} \\ = c_{n} \det(Y)^{(n+1)/2} \int_{T=T^{t}} \frac{[\mathsf{d}T]}{\det(\mathbb{1}_{n} + T^{2})^{k/2}}$$



Sup-norm bounds for Siegel cusp forms

Motivation

Results

Strategy of proof

Heat kernel

Concluding the proof

We estimate this contribution by

$$\sum_{\gamma \in \Gamma_{\infty}^{0}} \frac{1}{\prod_{j=1}^{n} \operatorname{ch}^{k}(r_{j}(Z, Z+S))} \leq \int_{S=S^{t}} \frac{[dS]}{\det(\mathbb{1}_{n} + (\frac{1}{2}Y^{-1/2}SY^{-1/2})^{2})^{k/2}} \\ = c_{n} \det(Y)^{(n+1)/2} \int_{T=T^{t}} \frac{[dT]}{\det(\mathbb{1}_{n} + T^{2})^{k/2}}$$

Standard matrix beta integral first calculated by Hua in 1963.



Sup-norm bounds for Siegel cusp forms

Motivation

Results

Strategy of proof

Heat kernel

Concluding the proof

We estimate this contribution by

$$\sum_{\gamma \in \Gamma_{\infty}^{0}} \frac{1}{\prod_{j=1}^{n} \operatorname{ch}^{k}(r_{j}(Z, Z+S))} \leq \int_{S=S^{t}} \frac{[dS]}{\det(\mathbb{1}_{n} + (\frac{1}{2}Y^{-1/2}SY^{-1/2})^{2})^{k/2}} \\ = c_{n} \det(Y)^{(n+1)/2} \int_{T=T^{t}} \frac{[dT]}{\det(\mathbb{1}_{n} + T^{2})^{k/2}}$$

Standard matrix beta integral first calculated by Hua in 1963. Then with  $det(Y) < (k/(2c_2(n)))^n$ , it easily follows that

$$\sum_{\gamma \in \Gamma_{\infty}^{0}} \frac{1}{\prod_{j=1}^{n} \operatorname{ch}^{k}(r_{j}(Z, \gamma Z))} \leq c_{n} k^{n(n+1)/4}$$



Sup-norm bounds for Siegel cusp forms

Motivation

 $\gamma$ 

Results

Strategy of proof

Heat kernel

Concluding the proof

We estimate this contribution by

$$\sum_{\substack{\in \Gamma_{\infty}^{0} \\ \prod_{j=1}^{n} \operatorname{ch}^{k}(r_{j}(Z, Z+S))}} \frac{1}{\sum_{S=S^{t}} \frac{[dS]}{\det(\mathbb{1}_{n} + (\frac{1}{2}Y^{-1/2}SY^{-1/2})^{2})^{k/2}} = c_{n} \det(Y)^{(n+1)/2} \int_{T=T^{t}} \frac{[dT]}{\det(\mathbb{1}_{n} + T^{2})^{k/2}}$$

Standard matrix beta integral first calculated by Hua in 1963. Then with  $det(Y) < (k/(2c_2(n)))^n$ , it easily follows that

$$\sum_{\gamma \in \Gamma_{\infty}^{0}} \frac{1}{\prod_{j=1}^{n} \operatorname{ch}^{k}(r_{j}(Z, \gamma Z))} \leq c_{n} k^{n(n+1)/4}$$

This gives the requisite non-compact bound.

15/15



Sup-norm bounds for Siegel cusp forms

Motivation

Results

Strategy o proof

Heat kernel

Concluding the proof

# Thank you!



### Extra definitions

Sup-norm bounds for Siegel cusp forms

#### Definition (Siegel cusp form)

Let  $\Gamma \subset \operatorname{Sp}_n(\mathbb{R})$  be a subgroup commensurable with  $\operatorname{Sp}_n(\mathbb{Z})$ , i.e., the intersection  $\Gamma \cap \operatorname{Sp}_n(\mathbb{Z})$  is a finite index subgroup of  $\Gamma$  as well as of  $\operatorname{Sp}_n(\mathbb{Z})$ .

We let  $\gamma_j \in \operatorname{Sp}_n(\mathbb{Z})$  (j = 1, ..., h) denote a set of representatives for the left cosets of  $\Gamma \cap \operatorname{Sp}_n(\mathbb{Z})$  in  $\operatorname{Sp}_n(\mathbb{Z})$ . Then, a *Siegel cusp form of weight k and degree n for*  $\Gamma$  is a function  $f : \mathbb{H}_n \longrightarrow \mathbb{C}$  satisfying the following conditions:

(i) f is holomorphic;

(ii) 
$$f(\gamma Z) = \det(CZ + D)^k f(Z)$$
 for all  $\gamma = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \Gamma$ ;

(iii) given  $Y_0 \in \operatorname{Sym}_n(\mathbb{R})$  with  $Y_0 \gg 0$ , the quantities  $\det(C_j Z + D_j)^{-k} f(\gamma_j Z)$  become arbitrarily small in the region  $\{Z = X + iY \in \mathbb{H}_n \mid Y \ge Y_0\}$  for the set of representatives  $\gamma_j = \begin{pmatrix} A_j & B_j \\ C_j & D_j \end{pmatrix} \in \operatorname{Sp}_n(\mathbb{Z}).$ 



### Extra definitions

Sup-norm bounds for Siegel cusp forms

• Distance matrix R(Z, W) on  $\mathbb{H}_n$  is given by  $R(Z, W) = \begin{pmatrix} r_1(Z, W) & 0 \\ & \ddots \\ & 0 & & r_n(Z, W) \end{pmatrix} \quad (Z, W \in \mathbb{H}_n)$ 

 $r_j(Z, W)$  related to the eigenvalues  $\rho_j(Z, W)$  of the cross-ratio matrix

$$\rho(Z,W) = (Z-W)(\overline{Z}-W)^{-1}(\overline{Z}-\overline{W})(Z-\overline{W})^{-1}$$

by the relation

$$\exp(2r_j(Z,W)) = \frac{1+\sqrt{\rho_j(Z,W)}}{1-\sqrt{\rho_j(Z,W)}} \qquad (1 \le j \le n).$$

• Siegel metric on  $\mathbb{H}_n$  given by:  $\bigwedge_{\substack{\lambda = \frac{1 \le j \le k \le n}{\det(\mathbf{Y})^{n+1}}} dx_{j,k} \land dy_{j,k}$   $(z_{j,k} = x_{j,k} + iy_{j,k})$